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Applying resampling methods to neurophysiological data
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Abstract

Standard statistical techniques do not always provide answers to complex physiological questions because often there are no parametric
or non-parametric distributions on which significance can be estimated. Resampling methods provide a battery of tests that can be used in
such circumstances. In the past few years these methods have been explored theoretically and are now employed frequently. In this paper
we describe a unified framework for the use of such methods in the context of neurophysiological data analysis. We construct specific tests
for placing confidence limits on estimates of mutual information and on parameters of circular data, and we present procedures for testing
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ypotheses on circular and on partitioned data. These tests are explained in detail and illustrated with real data from experiments w
onkeys.
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. Introduction

Resampling methods have conventionally been used as
means of tackling problems which are too complicated to

e solved analytically (‘Monte Carlo’ techniques,Metropolis
nd Ulam, 1949). Over the past 30 years, the theoretical foun-
ations for these methods have been expanded and substan-

iated (Efron, 1979). Among others, the jackknife, bootstrap,
nd permutation tests have been used extensively in various
elds and applications such as, for example, in astronomy
Barrow et al., 1984), medical imaging (Holmes et al., 1996),
nd econometrics (Mills and Zandvakili, 1997). These meth-
ds are particularly suitable for hypothesis testing and for
etermining the accuracy of non-parametric and/or complex
tatistics for which closed-form formulae, if they exist, de-
end on extensive assumptions.

∗ Corresponding author. Tel.: +972 2 675 8381; fax: +972 2 643 9736.
E-mail address:eranstark@md.huji.ac.il (E. Stark).

Neurophysiological data analysis, a field that utili
methods from multiple areas of research (information
ory, signal processing, statistics, and so on), often encou
situations in which a physiological question: (1) canno
answered in a parametric framework for which closed-f
formulae for accuracy exist; (2) may need to be exam
by standard, existing tools, but the results exhibit a bias
influences inference; and/or (3) can only be assessed b
cially tailored algorithms or procedures that, in turn, req
objective validation.

For these reasons, as well as due to the availability o
computers, resampling methods have gained increased
ularity in neuroscience (Georgopoulos et al., 1988; Optic
and Richmond, 1987, are early examples). These methods
flexible, easy to implement, applicable in non-parametric
tings, and require a minimal set of assumptions. In this p
we hope to contribute to this area by providing a compre
sive framework for the application of resampling method
data obtained from neurophysiological experiments, wit
emphasis on circular data. We develop specific tests in
165-0270/$ – see front matter © 2004 Elsevier B.V. All rights reserved.
oi:10.1016/j.jneumeth.2004.12.005
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framework, assess their properties, and provide examples of
their application.

The organization of the paper is as follows. In Section2
we describe the statistical framework, review essential topics
from resampling methods, and point out a few subtleties of
application. Section3 describes the experimental procedures
used to obtain neural data. In Section4, the core of this pa-
per, we describe several problems of a statistical nature that
do not have a closed-form solution and present procedures
based on resampling to solve them. We conclude with a brief
discussion.

2. A review of resampling methods

We begin with a brief formulation of the statistical frame-
work that constitutes the basis of our approach. Readers
already familiar with the formalities of resampling meth-
ods (for instance,Davidson and Hinkley, 1997; Efron and
Tibshirani, 1993) may wish to skim this section.

2.1. Data-generation model

Denote some data sample by�X, a vector ofn obser-
vations (each observation may be a scalar or some com-
plex data structure). The sample is assumed to be gener-
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A measure of estimation accuracy is thebias, defined as
the difference between the expected value of an estimator and
the estimated parameter itself, biasF ≡ EF [t( �X)] − T (F ). In
the described setup, whereF is sampled once (�X), we cannot
estimate a bias directly from the data. Moreover, closed-form
formulae for estimation of (or correction for) bias exist for
only a few statistics (for example, the sample variance).

2.2. Resampling approaches to parameter estimation

Several of the problems referred to in Section1 can be
circumvented in the general case of parameter estimation by
iid sampling from the data-generating probability mechanism
F → �X. Resampling (with repetitions allowed, i.e. with re-
placement) the empirical distribution̂F results in a surrogate
dataset,̂F → �Xbs = {xbs

1 , xbs
2 , . . . , xbs

n }. Note thatxbs
i is not

necessarily thei’th element of �X and thatxbs
i may be the

same asxbs
j , i �= j, because resampling is carried out with re-

placement. Calculating the statisticθ̂ = t( �X) of this dataset
yields another estimate of the same parameter,θ̂bs = t( �Xbs).
By repeating this process many times adistribution of the
statistic of interest, also called thebootstrapped distribution,
is generated.

The bootstrapped distribution of a statistic may be used
to measure the scatter and/or bias of an estimator. From this
d bias,
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ion (pdf)F, through independent and identically distribu

iid) sampling,F
iid−→ �X = {x1, x2, . . . , xn}. The empirica

istribution F̂ is defined as the output of a discrete fu
ion that assigns equal (1/n) probabilities to all observation
rob(A) = #{xi∈A}/n. The syntax #{xi∈A} means “the num
er of observations that belong toA”. It can be shown (Efron
nd Tibshirani, 1993) thatF̂ is a sufficient statistic forF, the
nknown distribution.

We are interested in estimating a parameterθ of the distri-
utionF (such as its mean or variance) obtained by a kn
ransformationTof F. We denote this byθ =T(F). The ‘plug-
n estimate’ (also called the ‘empirical maximum likelihoo
stimate) of this parameter is defined byθ̂ = T (F̂ ). Denote

he equivalent statistic bŷθ = t( �X).
For example, ifT(F) is the first momentµ=EF[X], then

( �X) is the sample’s mean,µF̂ = EF̂ [X] = �̄X. If �X is
he only source of information onF, then θ̂ = T (F̂ ) is a
onsistent estimator ofθ, that is, lim

n→∞ θ̂ = θ (by the weak

aw of large numbers).
The scatter(or precision) of an estimator may be m

ured by its standard error; for example, for the first
ent, plug-in application of the closed-form formula

he standard error of the mean giveŝse( �X) = σF̂ /
√
n =

1/n)

√
n∑

i=1
(xi − �̄X)

2
. Disappointingly, closed-form formu

ae for standard errors (or for a related measure− confidence
ntervals) exist only for the mean and a few other well-kno
tatistics.
istribution, estimates of the standard error of a statistic,
nd (non-parametric) confidence limits may be obtained
rocedure is quite simple:

. Given a sample�Xof sizen, compute a statistic of intere
θ̂ = t( �X).

. Resample�X (with replacement)Nbs times, arriving
at �Xbs

b = {xbs
1 , xbs

2 , . . . , xbs
n }, b = 1 . . . Nbs, surrogate

datasets.
. For each surrogate set, compute the statisticθ̂bs

b =
t( �Xbs

b ), b = 1 . . . Nbs.

. Compute the mean of the bootstrapped distribution¯̂
θ

bs =∑
θ̂bs
b /Nbs.

. Evaluate the accuracy of estimation by computing, f
the samebootstrapped distribution:
5.1 the standard error of θ̂, ŝe =√

Nbs∑
b=1

(θ̂bs
b − ¯̂

θ
bs

)
2
/(Nbs − 1) (the S.D. of̂θbs);

5.2 the bias,̄̂θ
bs − θ̂;

5.3 and the confidence limits (see below).

From the tails of the bootstrapped distribution, confide
imits for θ̂ may be established. Denote by 1−α the desired
onfidence interval for the estimate of the statistic an

ˆbs
sorted the sorted (in ascending order) values of the st
ics. The lower confidence limit is theNbsα/2 value ofθ̂bs

sorted
nd the upper confidence limit is theNbsα/2 value from the
nd: denote these limits by{θ̂lo, θ̂hi}. Confidence limits com
uted in this manner are robust to translations, transfo
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tions, and, contrary to some parametric confidence limits,
obey restrictions on the values that the parameter can take
(a range-preserving property). However, they are sensitive to
bias, which must be assessed separately. Methods for ‘auto-
matic’ consideration of bias during estimation of confidence
intervals have been developed (Efron and Tibshirani, 1993);
we will not elaborate upon them here.

The above procedure is cluttered by two potential sources
of noise:sampling noisethat is due to a small sample sizen
or to non-iid sampling, andresampling noise, resulting from
a small number of resampling repetitions,Nbs. Given a fixed
sample size, the first source imposes a lower bound on the
estimation error, and cannot be reduced by repeated resam-
pling. As for the second source of noise, for a sample size
n, there are 2n− 1 choosen distinct surrogate combinations

of sampleindices, or datasets

(
Ndistinct =

(
2n − 1

n

))
; in-

creasing the number of unique resampling repetitions beyond
Ndistinct does not improve estimation accuracy.Fig. 1shows,
on a logarithmic scale,Ndistinctas a function of sample sizen;
for instance, whenn= 5, there are only 126 distinct samples.
If the data permit, it is advisable to use tens-to-hundreds of
repetitions in order to estimate standard errors or bias; thou-
sands of repetitions are required for confidence limits (Efron
and Tibshirani, 1993). Thus, when sample size is small, the
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j ); bias is evaluated by (n − 1)((1/n)

∑
θ̂

jk
j − θ̂). This

estimate can be shown to be a quadratic approximation to
the bootstrap estimate of bias whenNbs is very large. Com-
pared with a practical number of bootstrap repetitions, the
jackknife bias may be a moreaccurateestimate. However,
jackknife estimates are lessprecise(have higher variance)
and behave erratically for some non-smooth statistics (for
example, quantiles which the bootstrap handles easily), so in
what follows we will not use them.

2.3. Hypothesis testing by resampling methods

Resampling techniques have applications other than pa-
rameter estimation. The statistic of interest does not have to
be an estimator of some parameter; it can be any transforma-
tion on (function of) the sample�X, t( �X). The bootstrapping
procedure (steps 1–3) described above may then be applied
to the test statistic, arriving at a bootstrapped distribution of
this statistic,t( �Xbs

b ). In order to test some null hypothesis (for
example,H0: t( �X) = �), the distribution, resampledunder
the null hypothesis, is compared to the statistic (or value) of
interest; in our example, the probability to obtaint( �X) equal
to or larger than� underH0 is given by the tail of the boot-
strapped distribution, prob(H0) = #{t( �Xbs

b ) ≥ �}/Nbs. The
process is entirely equivalent to the computation of a (1− 2
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a is
eliability of confidence limits (estimating the tails of the d
ribution) obtained by bootstrapping is limited, and a la
ample is then required to estimate trustworthy confid
imits.

An estimate of bias can also be obtained by an alte
ive method, thejackknife (‘leave-one-out’). Briefly, jack
nifed samples are obtained by generating reduced dat

� jk
j = {x1, . . . , xj−1, xj+1, . . . , xn}, j = 1 . . . n. For each

educed set, the statistic of interest is computed byθ̂
jk
j =

ig. 1. Number of distinct bootstrapping samples as a function of sa
ize. Ordinate is in a logarithmic (base 10) scale. Horizontal line is at
epetitions, the minimal number advisable for estimating confidence
f a statistic.
,

rob) confidence interval for the statistic of interest; its m
ies in its usefulness in more complex scenarios.

Consider an extension of the data-generation m
here, independentlyof the n1 observations ofF1 → �X1,

here aren2 observations ofF2 → �X2 (a two-sample sce
ario). If a test statistic is defined as a function of both s
les,t( �X1, �X2), composite hypotheses about the (unkno
istributionsF1 and F2 may be tested. For example,H0:
1 =F2 may be tested by defining an appropriate statistic

nstance, the difference between the means) and comp
he observed value to the bootstrapped distribution. The
trapping is doneunder H0: in this example, each surroga
ataset will containn1 +n2 elements of the concatenated
�X1, �X2}. Complicated situations can be handled using
ame framework (see Section4).

In the special case where the null hypothesis is equ
f distributions, a more powerful method is available: aper-
utation test. UnderH0: F1 =F2 it does not matter whic
istribution is the source of an observationxi ∈ { �X1, �X2}. A
tatistic is computed, grouping of individual observation
ither sample is randomly permuted (sampledwithout re-
lacement)Nperm times, and the observed statistic is co
ared to the distribution of permuted values as was previo
xplained. Note that since sampling is without replacem

here are only

(
n1 + n2

n1

)
distinct permuted datasets. Rat

han estimating the pdf generating the data as the boo
est of hypotheses does, a permutation test exploits the
ial symmetry (F1 =F2) thatH0 imposes on the distribution
llowing for the mixing of�X1 and �X2. The latter method
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preferable in the specific case of testing equality of distribu-
tions; other, more complex, null hypotheses may be tested
using the bootstrap method.

Regardless of the resampling technique (bootstrapping or
permutations), an appropriate statistic should be defined in
order for a test of hypotheses to be reliable. The number of
repetitions used should be large – on the order of thousands
– as in bootstrap estimation of confidence limits.

3. Data source

In the following sections we describe tests constructed
within the above framework and we apply them to neuro-
physiological data obtained from monkey experiments. In
this section we describe the procedure used to acquire the
data. Recordings were from the dorsal and the ventral pre-
motor (PMd, PMv) cortices of twoMacaca fascicularismon-
keys performing a prehension task. Targets were 3D objects
requiring different types of grasp (precision grip, power grip,
finger opposition, and so on) and were presented in six direc-
tions, equally spaced relative to a central touch pad. In order
to initiate a trial, a monkey had to press and hold the touch
pad: a target object was then presented for a short period of
time, followed by a delay (1000–1500 ms) during which ob-
jects were not visible. A ‘Go’ signal prompted the monkey
t
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method if one is available, and the information gained by the
new application is emphasized.

4.1. Mutual information estimates from finite data

Mutual information (I) is a measure of the reduction in
uncertainty of a random variable that occurs when the value
of another random variable is known. This measure can be
used for objective quantification of the dependence between
neural activity and external events (stimuli) or behaviors, and
(following Cover and Thomas, 1991) is defined by

I(R; S) ≡ H(S) − H(S/R) = H(R) − H(R/S)

=
∑

r ∈R,s∈ S

p(r, s)log
p(r, s)

p(r)p(s)
, (1)

whereH is entropy;R the neural activity (quantized in some
manner);Sthe stimulus set (or array of behaviors); and both
are discrete random variables. This definition indicates that
I is a symmetric measure. It has further advantage as it can
indicate statistical independence betweenR andS because
thenI(R; S) is, by definition, zero.

In order to measure mutual information from experimen-
tal data, an estimate of the joint pdfF̂ = p̂(r, s) is required.
From this estimate, the estimates of the marginal probabili-
t re,
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Neural data were acquired by inserting during each rec

ng session up to 16 independently movable (EPS 1
lpha-Omega Engineering, Nazareth, Israel) glass-p

ungsten micro-electrodes (impedance 0.2–2 M� at 1 kHz)
hrough the dura mater. Electrodes were arranged in tw
ependently adjustable guide tubes, such that up to eigh

rodes were inserted into each area (PMd, PMv). The si
rom these electrodes were amplified (10K), bandpass fil
5–6000 Hz), sampled at 25 kHz, and stored on disk (Al
ap 5.4, Alpha-Omega Eng.). Behavioral events were
led (6 kHz) and digitized. The signal from each electr
as subject to manual offline spike-sorting (Alpha-Sort
lpha-Omega Eng.) resulting in a set of well-isolated un
ll animal handling procedures were in accordance with
IH Guide for the Care and Use of Laboratory Anim

1996), complied with Israeli law, and were approved by
thics Committee of the Hebrew University.

. Results

Within the general framework described in Section2, one
ay devise procedures for estimating parameters an

esting specific statistical hypotheses without parametri
umptions. In what follows we describe several novel pr
ures for handling cases in which the analytical formulae
ither based on assumptions that we cannot realistically
r do not exist altogether. For each problem, the resam
olution is compared to a parametric or to a non-param
iesp̂(r) andp̂(s) can be obtained by summation. Therefo
he estimated quantitŷI depends on the (discrete) sampl
f the stimulus–response pairs (r, s) from the unknown dis

ribution F, and is subject to error. Bias, in particular, h
ers the estimation process, since theempirical joint pdf,

ˆ , estimated from a finite dataset, is bound to differ f
he product of the marginal distributions even when the
ariables are statistically independent. Several proce
ave been suggested to overcome these difficulties, su
ernel methods (Optican and Richmond, 1987), shuffling
f stimulus–response pairs (Chee-Orts and Optican, 199),
symptotic series expansions (Panzeri and Treves, 1996), and
symptotic theory (Strong et al., 1998), yielding improved es

imates of̂I. Regardless of the exact procedure, we would
o measure the scatter of the estimator by setting confid
imits on the estimate; to the best of our knowledge, ther
o closed-form formulae for doing so.

.1.1. Confidence limits of mutual information by
ootstrapping

Formally, we have a set ofn pairs of observationsF →
� = {(r1, s1), . . . , (rn, sn)}, and we want to estimate the p
ameterI from the empirical joint pdfF̂ and arrive at th
stimatorÎ. Both scatter and bias may be estimated f

he data using a bootstrap procedure. In the case of
le measurement, we resample values (with replaceme

his case, we resample the stimulus–response pairs (r,s) (with
eplacement) and recompute the statisticÎbs

b (for each resam
ling repetitionb= 1. . .Nbs). The bias ofÎ is estimated b
iasbs = (

∑
Îbs
b /Nbs) − Î, and the confidence limits of th
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(assumed to be unbiased)Î by {Îlo, Îhi} (Section2.2). Alter-
natively, the bias may be estimated by one of the abovemen-
tioned procedures (but see below). If the bias is not negligible,
it can be corrected for by subtraction, arriving at ‘de-biased’
estimates,

Îde-biased= Î − bias, (2.1)

{Îde-biased
lo , Îde-biased

hi } = {Îlo, Îhi} − 2 bias. (2.2)

The factor 2 in Eq.(2.2) is necessary because the boot-
strapped distribution is centered around a biased estimate;
equivalently, Eq.(2.1) could be written asIde-biased=
(
∑

Îbs
b /Nbs) − 2 bias.

4.1.2. Application: an example
Fig. 2illustrates an application of this procedure to neural

data obtained from prehension experiments. As an example,
we estimate the mutual information between spike counts of a
PMv unit and the planned direction of movement. InFig. 2A,
raster plots of the activity of a PMv unit are illustrated; the unit
was recorded during{93, 93, 91, 89, 93, 94} trials in differ-
ent behavioral conditions (six movement directions). During
the 400 ms just prior to the ‘Go’ signal, this unit exhibited
modulation of spiking with respect to behavior; spikes were
counted during this period for each trial, and the joint pdf
F̂ = p̂(r, s) was estimated by direct quantization of the re-
sponse space (Fig. 2B). The raw mutual information,̂I, was
estimated from�

F using Eq.(1) and corrected by plugging
into Eq.(2.1)biasanalytic = (

∑
s R̃s − R̃ − S + 1)/(2n log 2)

(Panzeri and Treves, 1996). In the latter formula, summation

F
d
l
S
s
m
a
m
b
(
t
b

ig. 2. Confidence limits for mutual information of a PMv unit prior to movem
irections shown in different panels (see Section4.1.2). The bottom part of each

ine); the upper part of each panel shows the corresponding peri-event time h
cale bar is 1 s. (B) Empirical joint probability distributionF̂ = p̂(r, s) (Section4.
ix panels of (A) as vertical lines) and movement directions. Gray levels give
ovement direction (abscissa, corresponding to the directions shown by the
nd 1 count). For display purposes the height (gray level) is spread so as to fi
utual information. Vertical dotted black line shows the raw estimateÎ. Histogra
ootstrapping the (r, s) pairs; the continuous dark gray line is its mean. The bo
2.1); this estimate closely matches the analytic correction described in the t
he left for presentation and is shown by the dark gray histogram (bottom); t
y Eq.(2.2).
ent. (A) A PMv unit’s spiking activity during trials requiring movement in six
panel shows a standard raster diagram, aligned on the ‘Go’ signal (vertical

istogram (obtained by smoothing rasters with a Gaussian window withσ = 15 ms).
1) of spike counts in the 400 ms just prior to the ‘Go’ signal (shown in the
the joint probabilities of getting a certain amount of spikes (ordinate) at a given

compass at the lower left-hand side of (A)). Measurements were discrete (every 60◦
ll the intervals between the discrete values. (C) Confidence limits of bias-corrected
m in light gray (top) shows the bootstrapped distribution (Îbs) obtained by
otstrap estimate of bias is the distance betweenÎ and the distribution mean, Eq.
ext (Section4.1.2). The bootstrapped distribution was shifted by twice the bias to
he dark gray dashed lines indicate the translated 99% confidence limits, obtained
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is over non-zero response binsR̃s in each behavior (s) out
of theSbehaviors and̃R is the number of non-zero response
bins in p̂(r) (this correction is intended to compensate for
limited sample sizen). The raw value waŝI = 1.35 bits and
the corrected value waŝIde-biased= 1.29 bits.

Next, the procedure explained in Section4.1.1was car-
ried out. The distribution of the bootstrapped statisticÎbs is
shown at the top ofFig. 2C in light gray: bootstrapped values
were, on average, higher than the raw estimateÎ, suggesting
that some bias indeed shifted the estimate upwards. The bias
estimated by bootstrapping was 0.067 bits—very close to the
first-order analytically estimated bias of 0.06. After comput-
ing and correcting the 99% confidence limits as in Eq.(2.2),
final estimates were obtained (dark gray dashed lines in the
bottom ofFig. 2C), suggesting that the unit transmitted be-
tween 1.19 and 1.38 bits of information (out of the possible
log2 6∼= 2.58) about the upcoming movement direction.

4.2. Estimating parameters for circular distributions

When measuring responses to moving gratings or neural
activity related to reaching movements, the measurements
are made in relation to the direction of motion, which is a
circular independent variable. In the preceding section, the
possible circular nature of the data was ignored for the sake
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sure of width): for a homogenously distributed sample,| �R| is
close to zero, while for samples clustered around their mean
it approaches the value of one.

4.2.1. Non-parametric confidence limits of circular
parameters

We want to estimate the PD of a circular sample as well
as its 1−α confidence interval. The suitable statistic is the
direction of the sample’s resultant,∠�R, as defined above.
Closed-form formulae for its confidence limits exist only un-
der certain assumptions:Mardia (1972)gives such formulae
for the specific case where the observations are from the unit
circle and originate in a circular counterpart of the Gaussian
distribution; that is, the von Mises distribution (which is uni-
modal, symmetric, and completely defined by two parame-
ters). If such assumptions cannot be made, the bootstrapping
method described below can be used for estimating confi-
dence limits.

Assume that�X is obtained by sampling the circle inM
equally spaced discrete directions�φ = {φ1, φ2, . . . , φM}.
Otherwise, discretize the observation directions. In each di-
rection we have a set ofnm observations,m= 1 . . .M,

totaling n =
M∑

m=1
nm such that �X = {(f 1
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hat the stimuli were treated as discrete. However, due t
ommon use of circular data and their physiological mean
t may be preferable to explore certain circular prope
f the data. Before describing specific tests designed t
ypotheses on such data, we introduce several basic

rom circular statistics.
Let us extend the data-generation model (Section2.1)

o a circular one-sample scenario. Each of then observa
ions in �X is now a vector, described in polar coordina
y �xi = (fi, φi) of (amplitude, direction). Note that in th
odel sampling is not limited to the circumference of
nit circle, so both amplitude and direction are sampled
continuum. The sample’s resultant (i.e. the vectorial

f all �xi’s), normalized to a length between 0 and 1, ma
epresented in Cartesian coordinates by

� = {Rx,Ry}, Rx =
∑

ficosφi∑
fi

, Ry =
∑

fisinφi∑
fi

(3)

all summations are overi = 1. . .n). The direction (argumen
f �R,∠�R = tan−1(Ry/Rx), resolved to the proper quadran

he first moment of the circular sample, or preferred direc

PD); its amplitude,| �R| =
√
R2
x + R2

y, gives the compleme

f the second moment, the circular variance (S = 1 − |�R|).
ote that if sampling is limited to the unit circle itse

� simplifies to the expression{Rx = (1/n)
∑

cosθi, Ry =
1/n)

∑
sinθi} (Mardia, 1972). The normalized amplitude

he resultant
∣∣�R∣∣ is invariant to rotations and can be regar

s a measure of concentration (andS = 1 − |�R| as a mea
stimateR, compute the mean amplitude of the observat

n each direction,f̄m = (1/nm)
nm∑
i=1

f i
m, and use Eq.(3).

ote that this process is not necessarily equivalent to d
pplication of Eq.(3) to �X: only when allnm’s are identica
o the two estimates converge. Next, rearrange the sam�X
uch that each set ofM observations from different directio
orms a new observation:

�̂j = {(f j

1 , φ1), . . . , (f j
m, φm), . . . , (f j

M, φM)},
= 1 . . .M, j = 1 . . .max(nm). (4)

f nm’s have different sizes due to unbalanced finite samp
he appropriate elements of�̂xj should be left empty. Neither�R
or the statistic∠�R change following this rearrangement.
re now in a position to directly apply a bootstrapping pr
ure (Section2.2) to the set of rearranged observations
rrive at confidence limits for the PD. A similar procedu
sing the test statistic| �R|, will yield confidence limits fo

he resultant’s amplitude, or sample width. The same b
trapped distribution of�R can be used for the computation
onfidence limits of both∠�R and| �R|.

.2.2. Application: confidence limits for PD and
oncentration of directional tuning curves

The activity of a single PMv unit was recorded dur
= 245 trials; we want to estimate the PD and the con

ration of the directional tuning curve (TC) of this unit
ell as confidence limits for these parameters. Trials
luded presentation of target objects in six fixed directi

� = {(0,1/6, . . . ,5/6)2π}. During movement in each tria
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Fig. 3. Confidence limits of PD and concentration of a PMv unit’s directional tuning curve during movement. (A) Empirical joint distribution of a PMv unit’s
firing rate during movement and movement direction. Measurements on the ordinate were quantized into bins of five spikes per second for display purposes.
Other conventions are the same as inFig. 2B. (B) Directional tuning curve of the same unit shown in A, obtained by averaging spike counts in each direction.
Radial scale corresponds to 15 spikes/sec; the resultant’s length is shown as a fraction of this radius. In a dotted line, the maximum likelihood estimate of a
von Mises distribution is shown. Clearly, the experimental data diverge from the von Mises distribution. (C) The tuning curve’s PD (∠�R, vertical continuous
black line) and its 99% confidence limits (dashed lines), estimated byNbs= 5000 resampling repetitions. The mean of the distribution is also shown (vertical
continuous gray line); the estimate is essentially unbiased. (D) Estimation of tuning concentration| �R|, along with confidence limits. Conventions are the same
as in (C).

the firing rate during a window of 400 ms around movement
initiation was noted asfi , so in this example we havexi = (fi ,
φm), i = 1. . .n, nm={42, 40, 41, 40, 40, 42}, φm ∈ �φ. Fig. 3A
illustrates the joint distribution off andφ. From this distribu-
tion, the TC of the unit was point-estimated by averaging the
variousfi ’s in each of theM directions, (̄fm, φm) (Fig. 3B);
the PD and concentration of this TC were computed, as were
their non-parametric 99% confidence limits (Fig. 3C and D).
As the figure suggests, this unit had sharp directional tun-
ing, with a PD of 193◦ (with 99% confidence limits at (179◦,
211◦)) and a resultant length of 0.21 (range (0.15, 0.27)).
As can be appreciated fromFig. 3B, the tuning curve did
not fit a von Mises distribution well (likelihood-ratio test,
p< 0.01). Nevertheless, we estimated parametric confidence
limits for the PD and the resultant’s length based on a von
Mises distribution (Mardia, 1972), arriving at wider (and bi-
ased) estimates for both parameters (PD: (161◦, 225◦); | �R|:
(0.06, 0.27)). Obviously, lack of fit between the data and the

von Mises pdf resulted in erroneous estimates of the confi-
dence limits both in terms of range and bias: application of
our procedure to data that did fit a von Mises distribution
yielded confidence limits similar to those obtained directly
under the assumption that the distribution is von Mises.

4.3. Testing circular distributions for equality

Assume that neural responses to certain circular stim-
uli under two conditions (say attentive and non-attentive)
are measured, and that we want to know whether the re-
sponses are affected by these conditions. Specifically, it is
of interest to know whetheranyaspect of the responses (that
is, their distributions) differs across the conditions. Statisti-
cally speaking, this is acircular two-samplescenario, where
there aren1 observations ofF1 → �X1 and, independently,
n2 observations ofF2 → �X2. Assume that the two circu-
lar distributions are sampled in the sameM discrete direc-
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tions. We want to testH0: F1 =F2. For linear, continuous
data, a standard two-sample non-parametric test, such as the
Kolmogorov–Smirnov goodness-of-fit test, can be used. For
two samples evaluatedon the unit circle itself, a Uniform-
Scores (Wheeler’s) test (Mardia, 1972) is adequate. However,
our case does not fall within these categories since the vectors
can be anywhere and not just on the circumference of the unit
circle; we will therefore use a circular permutation test.

4.3.1. Circular permutation test
Define the test statistict( �X1, �X2) as the absolute difference

between the resultants of the two samples

$R = ||�R1 − �R2||. (5)

UnderH0, this statistic should be close to zero; if the two
samples have equal concentrations but the PDs are displaced
by � radians,$R could approach a value of two. Note that
$R does not depend solely on the first moments of the dis-
tributions: if the PDs are similar but one sample is dispersed
and the other is concentrated,$R should be close to one.
Applying a permutation test in this setup is now straight-
forward: we randomly assign values from each discrete di-
rection to either sample (taking advantage of the identical
sampling frequencyM of the two distributions)Nperm times,
and recompute the statistic, arriving at a permuted distri-
b as
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sampling test (Crammond and Kalaska, 1996) for each ob-
ject separately). As the figure suggests, the circular distri-
butions appear to differ from one another. Applying a non-
parametric (likelihood-ratio) test of goodness-of-fit to these
data indicated that the two discrete distributions indeed dif-
fered (p< 0.01); the permutation test described above yielded
a similar result (Fig. 4B). Importantly, the permutation test
indicated that the difference was mainly due to a change of
tuning widthbetween objects rather than due to a change of
PDs (Fig. 4C and D).

4.4. Testing hypotheses on partitioned data: spatial
organization

For each unit recorded in the experiment, a preferred
object (PO) was computed as the object that elicited the
maximal response (Mann–WhitneyU-test, p< 0.01). Dur-
ing each recording session, up to eight electrodes were in-
serted through a common guide tube (inter-electrode distance
∼300�m), so multiple POs could be obtained from elec-
trodes in close proximity.Fig. 5A shows, in different rows,
POs from different sessions (recording sites). Usually, sev-
eral units were recorded by a single electrode and sometimes
several had POs. These are indicated by heavy line boxes in
Fig. 5A.

A question of physiological importance is whether POs
r m the
e nd of
s cts,
s e set,
S dif-
f ,
i
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2 ely).
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ution,$Rperm. The probability of obtaining a statistic
arge as or larger than$RunderH0 is then approximated b
rob(H0) = #{$Rperm≥$R}/Nperm.

Since sampling is discrete (or when discretization is p
ible), a conventional test of goodness-of-fit (such as thχ2

r the likelihood-ratio test) can be applied. However, the
utation test described above is more sensitive to reve
eviation from equality. Moreover, a slight variation in

est statistic enables us to test the sameH0 with different alter-
atives. Assume that we wish to test the null hypothesisH0:
1 =F2 against the alternativeH1: ∠�R1 �= ∠�R2; that is, tha

he samples have different PDs regardless of their width
ppropriate test statistic could be$R(1) = π − |π − |∠�R1 −
�R2||, the absolute difference between two preferred d

ions. If the alternativeH1 is non-equal sample concent
ions,$R(2) = ||�R1| − |�R2||; that is, the absolute differen
etween the amplitudes of the resultants, could be utiliz

.3.2. Application: comparison of tuning curves
Trials included presentation of and movement tow

ifferent objects in the same six directions. A physiolo
al question of interest is whether a certain unit chan
ts directional tuning in response to different objects
rder to address this question for one specific PMd
irectional tuning curves during trials involving pow
rips (�n = {22,20,19,20,19,18}) and precision grips (�n =
20,22,20,20,23,21}) were estimated (Fig. 4A). During
reparation for movement, this unit had significant di

ional tuning toboth objects (determined by showing s
istical significance for both a Kruskal–Wallis test and a
ecorded in the same site are as similar as expected fro
ntire sample. A negative answer would indicate some ki
patial arrangement of units with similar preferred obje
ince units recorded by the same electrode (electrod
electrodes) are anatomically closer than units recorded by
erent electrodes at the same recording site (Ssites), which are
n turn, closer than units recorded in different sites (SPMd).
xamination of the data ofFig. 5A indicates that overal
oth object types were preferred to a similar degree (28
1 preferences for precision and power grips, respectiv
loser inspection of the different rows (sites) suggests,
ver, that multiple units recorded in the same site often
he same PO.

How can this tendency be quantified? A simple and d
ethod would be to compute all pair-wise PO ‘differenc
ithin sites and compare them to pair-wise differences in
ntire sample. Define a pair-wise difference as 0 if the
bjects are identical and as 1 if they are different. For the
f Fig. 5A, the mean pair-wise PO-difference within sites w
.32 and across all observations it was 0.5. The two po

ions differed significantly (Mann–WhitneyU-test,p< 0.01),
ndicating that nearby neurons tended to ‘prefer’ similar
ects.

The direct method exemplified above has, however,
rawbacks: (1) it considers only pair-wise differences (or

larities), neglectinghigher-order similarities; (2) it does no
ccount for possibleintra-electrode effects; (3) anapprox-
mationof the probability calculation was used. While t
atter technicality can be easily amended by using an e
inomial test, the issue of higher-order similarities can
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Fig. 4. Differences between tuning curves of a PMd unit during preparation for movement. (A) Tuning curve for a power grip object (light gray), superimposed
on a tuning curve for a precision grip object (dark gray). Radius corresponds to 25 spikes/s; other conventions are the same as inFig. 3B. (B) Histogram of the
permuted statistics$Rperm values, testing the null hypothesis that the circular distributions are the same. Vertical line indicates the value of the observed$R.
The null hypothesis is strongly rejected.Nperm= 5000. (C) Values of the permuted statistic$R(1)perm, testing whether the two distributions have identical PDs.
The observed$R(1) is larger than only 94% of the permuted statistics’ values, hence the null hypothesis cannot be rejected at the 5% level. (D) Histogram of the
permuted statistic$R(2)perm. The observed value (vertical line) was larger than all bootstrapped values, indicating that the difference between the distributions
is likely to be due to different tuning widths.

This can be illustrated with a simple example. Assume that
four Bernoulli trials with a success probability of 1/2 are per-
formed (analogous to four POs within the same site), and that
in all trials failures were observed. If pair-wise probabilities
are computed, then six pairs, each consisting of two failures
with a probability of 1/4, should be observed; the probability
of observing such a pair can be estimated from the sample by
the geometric mean of all observations, which in this case is
1/4. However, the a-priori probability of four failures in four
trials is 1/16. The discrepancy is due to the fact that by lim-
iting quantification to pairs, the higher-order structure was
missed altogether.

The second problem which arises from ignoring intra-
electrode similarities is more severe. Intra-site similarities
(rows of Fig. 5A) are obviously affected by intra-electrode

similarities (heavy boxes within rows): in six out of nine
cases, intra-electrode pairs were identical. In addition, some
intra-site similarities were entirely due to intra-electrode sim-
ilarities (see, for example, seventh row from the bottom). The
direct method used above does not take these similarities into
account at all.

Both the first and second problems could be solved by us-
ing a bootstrap test of hypotheses. The null hypothesis is that
intra-site similarities are the same as similarities throughout
the entire sample. For each ‘element’s (for example, a site,
i.e., a row ofFig. 5A) a statistict(s) is computed; in our exam-
ple, it can simply be the number of ‘ones’ in the site, denoted
by m. Then, a probability is estimated under some assump-
tionAglobal, for example, of random allocation from the entire
sample. Denote the global probability of the occurrence of a
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Fig. 5. Partitioned binary observations: spatial arrangement of preferred objects. (A) Example of a dataset (see also Section4.4). Observations are preferred
objects (POs) of PMd units from one monkey, determined by applying a Mann–WhitneyU-test to spike counts during the 400 ms just before the ‘Go’ signal. ‘1’
indicates preference for a precision grip, while ‘2’ indicates preference for a power grip; all observations together constituteSPMd. Different rows correspond to
different recording sites (Ssites), hence observations within the same row are from units anatomically closer than between rows. Heavy line boxes within each
row enclose numbers corresponding to objects preferred by units recorded from the same electrode (Selectrodes). (B) Testing equality of intra-site and population
(sample) similarities (setsSsitesandSPMd). Vertical line shows the observed value of the log-likelihood,L(SPMd). Similarities were unlikely to be equal (p< 0.01),
since almost all bootstrapped values were larger than the observedL(Ssites) (black line). (C) Comparison of intra-site similarities to the similarities in the entire
population, taking into account intra-electrode influences. Resampling was done separately for electrodes with two POs (heavy line boxes) and separately for
electrodes with a single PO (see Section4.4). Comparison of the sample statistic,L(Ssites) with its bootstrapped distribution suggested that intra-site similarities
are neither explained by intra-electrode similarities nor are likely to arise by chance (p< 0.05); however, intra-electrode similarities clearly affected this result
(compare with (B)).

‘one’ (a precision grip object) byp (here, 0.57), the number of
such objects in a given site (row) bym, and the total number
of observations in that site byM. The probability to observe
m or fewer ‘ones’ (orM−m or fewer ‘twos’, whichever is
smaller) is then given by

p(t(s)|Aglobal) = min

{
m∑
k=0

(
M

k

)
pk(1 − p)M−k,

M−m∑
k=0

(
M

k

)
(1 − p)kpM−k

}
. (6)

Since the sample includes a number of sites, the average log-
likelihood of the set is computed by

L (S) = 1

|S|
∑
s∈ S

log(p(t(s)|Aglobal)), (7)

where, in our case,S is the set of sitesSsitesand|S| the total
number of sites (19). The statisticL(S) reflects the probability
of obtaining the observed intra-site similarities ofall orders,

normalized by the number of sites in the sample; in the case
of our example, it is equal toL(Ssites) =−1.44.

Next, this statistic is compared to its expected value.
Since sites of different size were used (tackling the first
problem described above by taking higher order similari-
ties into consideration), there is no analytically-computable
expected value. However, by random assignment (with re-
placement) of POs from the entire sample to sites and repeti-
tive calculations ofL(Sbs

sites), a bootstrapped distribution of
L(Ssites) can be generated, and the probability of accept-
ing the null hypothesis can be estimated from its tail (by
prob(H0) = #{(L(Sbs

sites,b) ≤ L(Ssites)}/Nbs). Fig. 5B shows
the results of applying this procedure to our dataset: the ob-
servedL(Ssites) was indeed surprising, being smaller than
99% of its bootstrapped values, suggesting that within-site
similarities could not be attributed to chance alone.

To address the second problem above (the confounding ef-
fect of intra-electrode similarities on intra-site similarities),
resampling should be performed in a manner thatconserves
subset structure, the composition of units recorded by each
electrode. If a certain row ofSsitescontainsd electrodes (for
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example, POs of units recorded by three electrodes in the
same site,Fig. 5A, fourth row from the bottom), resampled
‘sites’ should also containdelectrodes, each of the same size
and structure (POs of three electrodes, two with two POs and
one with one PO, but not necessarily all from the same site
(row)). Note that the value ofL(Ssites) does not change—only
the null hypothesis does, as it now considers intra-electrode
effects. This procedure yieldedsmallerbootstrapped values
(Fig. 5C), indicating that some intra-site similarities could
indeed be attributed to intra-electrode similarities. Neverthe-
less,L(Ssites) was smaller than over 95% of these bootstrapped
values, suggesting that some anatomical organization beyond
similarities within the same electrode does exist among the
recording sites.

Two points should be stressed. First, the assumptionAglobal

used to estimate the probabilities is not verified during the
procedure; in fact, it does not have to be exactly correct: the
only requirement is for it to be applied toall (the original
and the resampled) sets during the bootstrapping procedure.
Second, assignment of observations from set to set should
conserve subset structure, as exemplified above.

The above procedure may be generalized to any dataset
obeying similar rules of partitioning (in each set, each obser-
vation appears once, and each set is a union of the elements
of another, hierarchically lower set). A variant of this proce-
dure, theCircular Variance Test, was applied byBen-Shaul
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Although these applications are by no means exhaustive,
they do represent an array of problems that can be addressed
in the framework of resampling methods. The procedures
constructed here were applied to scalar and complex (polar)
variables. Resampling methods may be easily applied to vec-
tor statistics, for example, to a cross-correlation function or to
the spike-triggered average. In order to construct confidence
limits for such statistics computed from a finite dataset, data
could be resampled, the vector statistic could be recomputed,
and the confidence limits could be estimated from the sorted
values ofeach elementof the vectors.

When can resampling methods be used to answer a sta-
tistical question? It turns out that under most circumstances
and for most statistics, such methods are readily applicable.
Exceptions to straightforward application include dependent
sampling (deviation from iid sampling such as a time series),
and non-smooth statistics (for instance, the sample’s maxi-
mal value). Such cases may, however, be ‘worked around’ by
particular resampling techniques or by smoothing data prior
to resampling (Chee-Orts and Optican, 1993; Davidson and
Hinkley, 1997).

A question that is particularly relevant to the neurophys-
iologist is therefore whenshould resampling methods be
used. One of the main advantages of resampling methods,
as demonstrated by the procedures presented in this paper,
is that they are tuned to the data at hand: the bootstrap esti-
m ation
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t al. (2003)to PDs of units recorded in the Macaque mo
ortex. In this paper we have described an application to
nal variables (preference for discrete object types). Cle
ther applications are possible as well.

. Discussion

We have presented applications of resampling met
o four types of physiological issues. The first procedure
pplied to estimates of mutual information from discrete n
al data, and allowed placing confidence limits on such
imates, a task that does not have an analytical equiva
he second procedure involved confidence limits as

his time on circular parameters that often describe dat
ained from neurophysiological experiments. Here, the
ould be achieved by making parametric assumptions o
ata, assumptions that, as shown, can yield incorrect re
hese two procedures used the bootstrap method of re
ling. The third procedure was also related to circular d
nd involved a comparison of distributions; for this appl

ion, use of a permutation test was appropriate, due t
ymmetric null hypothesis. While a non-parametric tes
oodness-of-fit could be used with lower sensitivity, it co
ot reveal sources of differences. We concluded with a
edure designed to test specific hypotheses on spatia
ered data, which can be applied to any dataset that o
ertain rules of partitioning. Due to the complicated d
tructure and possible interactions between ‘sets’, we
bootstrapping-based test with non-trivial resampling r
ates the probability mechanism underlying data gener
Section4.1) and permutation tests exploit the symmetry
he null hypothesis (Section4.3). These properties imply th
o parametric assumptions must be made during the pro
evertheless, this is not all goodness. As is well known f
onventional statistics, parametric tests, when their ass
ions are met, are preferred over non-parametric tests d
heir higher sensitivity (power, the probability to reject
ull hypothesis when the alternative is correct) as well as

o their inferential value.
We thus propose the following scheme (consultTable 1).

f data and statistic conform nicely to some parametric
ribution, aparametric testis preferable. If this is not th
ase and a non-resampling,non-parametrictest is available
t can be used, saving computer time and additional prog

ing. If such a test does not exist or additional verifica
f test assumptions or performance is needed, aresampling
non-parametric) test should be utilized.

If only few assumptions can be made about the data b
ppropriate non-resampling test does not exist, paramet
ampling is possible. One would need to estimate param
f the distribution assumed to have generated the data
esample fromthat distribution: such resampling was ori
ally termed ‘Monte Carlo’ simulations and is often use
valuate properties of statistical tests. Alternatively, res
ling may be performed directly under certain assumpt

uning the test to fit thetypeof data in hand, rather than to
ingle, specific, dataset.

In summary, we presented a unified framework for the
f resampling methods by the analyst of neurophysiolog
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Table 1
Properties of different families of statistical tests

Test Parametric Non-parametric Resampling
Applicability Specific cases Wide Almost all cases
Assumptions Fixed Fixed, but usually weak Flexible
Computation time Short Usually short Could be long
Inference Parametric Non-parametric Both non-parametric and parametric
Usage Straightforward Straightforward May require additional planning or programming

data. We have shown that resampling-based procedures can
be easily applied to a host of different types of problems yield-
ing meaningful results, results that often cannot be obtained
using conventional methods.

Routines for implementing the procedures described in
this paper were written in C and in MATLAB and are available
from ES upon request.
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