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Abstract

Standard statistical techniques do not always provide answers to complex physiological questions because often there are no parametric
or non-parametric distributions on which significance can be estimated. Resampling methods provide a battery of tests that can be used in
such circumstances. In the past few years these methods have been explored theoretically and are now employed frequently. In this papel
we describe a unified framework for the use of such methods in the context of neurophysiological data analysis. We construct specific tests
for placing confidence limits on estimates of mutual information and on parameters of circular data, and we present procedures for testing
hypotheses on circular and on partitioned data. These tests are explained in detail and illustrated with real data from experiments with behaving
monkeys.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction Neurophysiological data analysis, a field that utilizes
methods from multiple areas of research (information the-
Resampling methods have conventionally been used asory, signal processing, statistics, and so on), often encounters
a means of tackling problems which are too complicated to situations in which a physiological question: (1) cannot be
be solved analytically (‘Monte Carlo’ techniquédetropolis answered in a parametric framework for which closed-form
and Ulam, 1949 Over the past 30 years, the theoretical foun- formulae for accuracy exist; (2) may need to be examined
dations for these methods have been expanded and substarpy standard, existing tools, but the results exhibit a bias that
tiated Efron, 1979. Among others, the jackknife, bootstrap, influences inference; and/or (3) can only be assessed by spe-
and permutation tests have been used extensively in variousially tailored algorithms or procedures that, in turn, require
fields and applications such as, for example, in astronomy objective validation.
(Barrow et al., 198Yt medical imagingllolmes et al., 1996 For these reasons, as well as due to the availability of fast
and econometricills and Zandvakili, 199Y. These meth-  computers, resampling methods have gained increased pop-
ods are particularly suitable for hypothesis testing and for ularity in neuroscienceGeorgopoulos et al., 1988; Optican
determining the accuracy of non-parametric and/or complex and Richmond, 198are early examples). These methods are
statistics for which closed-form formulae, if they exist, de- flexible, easy to implement, applicable in non-parametric set-
pend on extensive assumptions. tings, and require a minimal set of assumptions. In this paper
we hope to contribute to this area by providing a comprehen-
sive framework for the application of resampling methods to
* Corresponding author. Tel.: +972 2 675 8381; fax: +972 2 643 9736, 0ata obtained from neurophysiological experiments, with an
E-mail addresseranstark@md.huiji.ac.il (E. Stark). emphasis on circular data. We develop specific tests in this
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framework, assess their properties, and provide examples of A measure of estimation accuracy is thias defined as

their application.
The organization of the paper is as follows. In Secfon

the difference between the expected value of an estimator and
the estimated parameter itself, bigs: E¢[#(X)] — T(F).In

we describe the statistical framework, review essential topics the described setup, whefds sampled onceX), we cannot
from resampling methods, and point out a few subtleties of estimate a bias directly from the data. Moreover, closed-form
application. Sectio3 describes the experimental procedures formulae for estimation of (or correction for) bias exist for
used to obtain neural data. In Sectibrthe core of this pa-  only a few statistics (for example, the sample variance).
per, we describe several problems of a statistical nature that

do not have a cloged—form solution and present pr'ocedu.reszlzl Resampling approaches to parameter estimation
based on resampling to solve them. We conclude with a brief

discussion. Several of the problems referred to in Sectiboan be

circumvented in the general case of parameter estimation by
iid sampling from the data-generating probability mechanism
F— X. Resampling (with repetitions allowed, i.e. with re-
We begin with a brief formulation of the statistical frame- Placement) the empirical distributidnresults in a surrogate
work that constitutes the basis of our approach. Readersdatasetf — XS = (xS, x5s, “;,x’k;s}' Note thatxf®is not
already familiar with the formalities of resampling meth- necessarily thé'th element of X and thatx?S may be the

ods (for instanceDavidson and Hinkley, 1997; Efron and same a&?s, i ], because resampling is carried out with re-

Tibshirani, 1993 may wish to skim this section. placement. Calculating the statistic= #(X) of this dataset

yields another estimate of the same paramé®ér= t(f( bs),

By repeating this process many timesliatribution of the

statistic of interest, also called theotstrapped distribution
Denote some data sample B a vector ofn obser- is generated.

vations (each observation may be a scalar or some com- The bootstrapped distribution of a statistic may be used

plex data structure). The sample is assumed to be generto measure the scatter and/or bias of an estimator. From this

ated by an unknown stationary probability distribution func- distribution, estimates of the standard error of a statistic, bias,

tion (pdf) F, through independent and identically distributed and (non-parametric) confidence limits may be obtained. The

2. Areview of resampling methods

2.1. Data-generation model

(iid) sampling, F Ld> X = {x1, x2, ..., x,}. The empirical
distribution 7 is defined as the output of a discrete func-
tion that assigns equal/fi) probabilities to all observations,
prob@) =#{x €A}/n. The syntax #x €A} means “the num-
ber of observations that belongAd. It can be shownEfron
and Tibshirani, 1998that F* is a sufficient statistic foF, the
unknown distribution.

We are interested in estimating a paramétefrthe distri-
butionF (such as its mean or variance) obtained by a known
transformatioT of F. We denote this by = T(F). The ‘plug-
in estimate’ (also called the ‘empirical maximum likelihood’
estimate) of this parameter is defined Eby: T(F). Denote
the equivalent statistic by = #(X).

For example, ifT(F) is the first momeni = EF[X], then
t(f() is the sample’s meang; = Ex[X] = X. If X is
the only source of information oF, thend = T(F) is a
consistent estimator df, that is,nLiryoé =6 (by the weak

law of large numbers).

The scatter(or precision) of an estimator may be mea-
sured by its standard error; for example, for the first mo-
ment, plug-in application of the closed-form formula for
the standard error of the mean givé§X) = o}/ /n =

n 52
(1/n) /> (x; — X) . Disappointingly, closed-form formu-
i=1

lae for standard errors (or for a related measuoenfidence
intervals) exist only for the mean and a few other well-known
statistics.

procedure is quite simple:

1. Givena sampl&of sizen, compute a statistic of interest,
0 = 1(X).

. Resample)? (with replacement)NbS times, arriving
at XPS= (xS x8s ... xBS), b =1...NPS, surrogate
datasets.

3. For each surrogate set, compute the statigfft=

(X0, b=1...N"s.

~b
Compute the mean of the bootstrapped distribLﬂign:
> 6PS/NPS,

2

4.

5. Evaluate the accuracy of estimation by computing, from
the samévootstrapped distribution:
5.1 the  standard error  of 6, se=
Nbs ~bs 2 .
S (@P5—6") /(Nbs— 1) (the S.D. 0B"S);
b=1

~bs
5.2 the bias¢ o 0;
5.3 and the confidence limits (see below).

From the tails of the bootstrapped distribution, confidence
limits for & may be established. Denote by-r the desired
confidence interval for the estimate of the statistic and by
@ggrted the sorted (in ascending order) values of the statis-

tics. The lower confidence limit is tHe"Sx/2 value oféggrted

and the upper confidence limit is th¥Se/2 value from the
end: denote these limits 490, 6hi}. Confidence limits com-
puted in this manner are robust to translations, transforma-
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tions, and, contrary to some parametric confidence limits, ;(5(".‘); bias is evaluated byn(— 1)((1/”)2@.,!( _ @). This

obey restrictions on the values that the parameter can takeesti/mate can be shown to be a quadratic approximation to

(arange-preserving property). However, they are sensitive 10 pootstrap estimate of bias whish is very large. Com-
b|a§, whlch.must'be assgssed gepara.tely. 'Methods fpr ‘auto-pared with a practical number of bootstrap repetitions, the
_matlc’ consideration of bias during est|mz_;\t|on_ of gonﬁdence jackknife bias may be a momccurateestimate. However,
intervals have been developégfion and Tibshirani, 1993 jackknife estimates are legsecise(have higher variance)
we will not elaborate upon them here. and behave erratically for some non-smooth statistics (for

The above procedure is cluttered by two potential sources gy ample, quantiles which the bootstrap handles easily), so in
of noise:sampling nois¢hat is due to a small sample si@ge  \yhat follows we will not use them.

or to non-iid sampling, antesampling noisgresulting from

a small number of resampling repetitioh&s. Given a fixed
sample size, the first source imposes a lower bound on the
estimation error, and cannot be reduced by repeated resam-
pling. As for the second source of noise, for a sample size
n, there are @ — 1 choosen distinct surrogate combinations

2.3. Hypothesis testing by resampling methods

Resampling techniques have applications other than pa-
rameter estimation. The statistic of interest does not have to
be an estimator of some parameter; it can be any transforma-

of sampleindices or datasetq nisinct 2n -1 in- tion on (function of) the sampl#, 7(X). The bootstrapping

n procedure (steps 1-3) described above may then be applied
creasing the number of unique resampling repetitions beyondto the test statistic, arriving at a bootstrapped distribution of
Ndistinct does not improve estimation accurakig. 1shows, this statistict()?gs). In order to test some null hypothesis (for
on a logarithmic scaléy¥si"tas a function of sample size example,Ho: #(X) = ©), the distribution, resampledander

for instance, when =5, there are only 126 distinct samples. the null hypothesiss compared to the statistic (or value) of
If the data permit, it is advisable to use tens-to-hundreds of interest: in our example, the probability to obtdﬁ) equal
repetitions in order to estimate standard errors or bias; thou-to or larger thar® underHg is given by the tail of the boot-
sands of repetitions are required for confidence lintfsqn strapped distribution, proip) = #{t(i(ltﬁ > ©}/NPS. The
and Tibshirani, 1998 Thus, when sample size is small, the process is entirely equivalent to the computation of a @
reliability of confidence limits (estimating the tails of the dis-  prob) confidence interval for the statistic of interest; its merit
tribution) obtained by bootstrapping is limited, and a larger |ies in its usefulness in more complex scenarios.

sample is then required to estimate trustworthy confidence  Consider an extension of the data-generation model
limits. where,independentlyof the n; observations off; — X1,

An estimate of bias can also be obtained by an alterna-there aren, observations off; — 5(2 (a two-sample sce-
tive method, thegackknife (‘leave-one-out’). Briefly, jack-  nario). If a test statistic is defined as a function of both sam-
Ifnifed samples are obtained by generating reduced datasetsmes,,()}l, )}2)' composite hypotheses about the (unknown)
XJ]'.‘ ={x1,...,Xj_1,Xj11,..., X2}, Jj=1...n.Foreach distributionsF1 and F» may be tested. For examplElg:

‘ F1 =F2 may be tested by defining an appropriate statistic (for
instance, the difference between the means) and comparing
the observed value to the bootstrapped distribution. The boot-
strapping is donender Hy: in this example, each surrogate
dataset will contaim; + no elements of the concatenated set,
{X1, X»}. Complicated situations can be handled using the
same framework (see Sectidh

In the special case where the null hypothesis is equality
of distributions, a more powerful method is availablgrea-
mutation testUnderHg: F1=F> it does not matter which
distribution is the source of an observatigre {X1, X2}. A
statistic is computed, grouping of individual observations to
either sample is randomly permuted (sampbethout re-
placementNPe'™ times, and the observed statistic is com-
pared to the distribution of permuted values as was previously
explained. Note that since sampling is without replacement,

reduced set, the statistic of interest is computed%y:

100000

10000 ¢

1000

100 ¢

Number of distinct samples

, , : : : ny+nz2\ .. .
o 1z B» 4 H 6 7 & & M0 there are onl distinct permuted datasets. Rather
Sample size (n) ni

than estimating the pdf generating the data as the bootstrap
size. Ordinate is in a logarithmic (base 10) scale. Horizontal line is at 1000 test of hypOtheseS does, a permutation test eXpIOItS the spe-

repetitions, the minimal number advisable for estimating confidence limits cial SYmme”y Fl :_ FZ) thaEHO |mpgses on the dlstrlbutloqs,
of a statistic. allowing for the mixing ofX; and X,. The latter method is

Fig. 1. Number of distinct bootstrapping samples as a function of sample
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preferable in the specific case of testing equality of distribu- method if one is available, and the information gained by the
tions; other, more complex, null hypotheses may be testednew application is emphasized.
using the bootstrap method.

Regardless of the resampling technique (bootstrapping 0r4 1 Mutual information estimates from finite data
permutations), an appropriate statistic should be defined in
order for a test of hypotheses to be reliable. The number of  \yutual information 0) is a measure of the reduction in

repetitions used should be large — on the order of thousandsncertainty of a random variable that occurs when the value
—asin bootstrap estimation of confidence limits. of another random variable is known. This measure can be
used for objective quantification of the dependence between
neural activity and external events (stimuli) or behaviors, and
3. Data source (following Cover and Thomas, 199is defined by

In the following sections we describe tests constructed I(R; S) = H(S) — H(S/R) = H(R) — H(R/S)
within the above framework and we apply them to neuro-
physiological data obtained from monkey experiments. In = Z p(r, s)log ,
this section we describe the procedure used to acquire the reRses pP()p(s)
data. Recordings were from the dorsal and the ventral pre-
motor (PMd, PMv) cortices of twblacaca fascicularignon-
keys performing a prehension task. Targets were 3D objects
requiring different types of grasp (precision grip, power grip,

p(r, s)

1)

whereH is entropy;R the neural activity (quantized in some
manner);Sthe stimulus set (or array of behaviors); and both
are discrete random variables. This definition indicates that

finger opposition, and so on) and were presented in six direc-! IS a symmgtrllc measure. It has further advantage as it can
tions, equally spaced relative to a central touch pad. In orderIndlcate sta}tlstmal |r?d'e.pendence betwéeand S because

to initiate a trial, a monkey had to press and hold the touch tNen!(R ) is, by definition, zero. _ _

pad: a target object was then presented for a short period of N OTder to measure mutual information from experimen-

time, followed by a delay (1000—-1500 ms) during which ob- tal datz?],. an e_stimate r?f the.joint pﬂff:hi’(r’ ) is_ rethuiret()j. bil
jects were not visible. A ‘Go’ signal prompted the monkey From this estimate, the estimates of the marginal probabili-

to reach for, grasp, and hold the target object. ti:sﬁ(r) and;é(s) can'tzedobtair:jed by aum(;nation. Theref:?re,
Neural data were acquired by inserting during each record- (€ estimated quantity depends on the (discrete) sampling

ing session up to 16 independently movable (EPS 1.31,°f the stimulus—_respor_lse pairs § from th_e unkn_own disf
Alpha-Omega Engineering, Nazareth, Israel) glass-platedtrIbUtlon F, a_nd IS subject to error. Bias, n pa_rt|_cular, hin-
tungsten micro-electrodes (impedance 0.2-2 &t 1kHz)  ders the estimation process, since &mapirical joint pdf,
through the dura mater. Electrodes were arranged in two in- I; estlrgated ffrﬁm a fln_|te ldda_ltas_st, s bound tohdlffeLfrom
dependentlyadjustableguidetubes,suchthatuptoeightelec—t € pro uctoft € marginal Istributions even when the two
trodes were inserted into each area (PMd, PMv). The Signalsvanables are statistically independent. Seye_ral procedures
fromthese electrodes were amplified (10K), bandpass fiIteredEaVe T)een l:uggeste_d to ovzrco_mhe thege d|ff|culr:|e;|,_ such as
(5-6000 Hz), sampled at 25 kHz, and stored on disk (Alpha- ernel methods @ptican and Richmond, 1987shuffling

Map 5.4, Alpha-Omega Eng.). Behavioral events were sam-Of stimngs—re;ponse pai.rGIIQee-Or_ts and Optican, 1993
pled (6 kHz) and digitized. The signal from each electrode asymptotic series expansiomaizeri and Treves, 19@nd

was subject to manual offline spike-sorting (Alpha-Sort 4.0, aSymptotictheorygtrong etal., 1998yieldingimproved es-
Alpha-Omega Eng.) resulting in a set of well-isolated units. timates off. Regardless of the exa_ct procedure, we WOUl.d like
All animal handling procedures were in accordance with the to measure the scatter of the estimator by setting confidence
NIH Guide for the Care and Use of Laboratory Animals limits on the estimate; to the best of our knowledge, there are

(1996), complied with Israeli law, and were approved by the no closed-form formulae for doing so.

Ethics Committee of the Hebrew University.
4.1.1. Confidence limits of mutual information by

bootstrapping
4. Results Formally, we have a set of pairs of observationg —

X = {(r1, s1), ..., (rn, s»)}, and we want to estimate the pa-

Within the general framework described in Sectihone rameterl from the empirical joint pdfF' and arrive at the

may devise procedures for estimating parameters and forestimator/. Both scatter and bias may be estimated from
testing specific statistical hypotheses without parametric as-the data using a bootstrap procedure. In the case of a sin-
sumptions. In what follows we describe several novel proce- gle measurement, we resample values (with replacement); in
dures for handling cases in which the analytical formulae are this case, we resample the stimulus-response pag€\ith
either based on assumptions that we cannot realistically make'eplacement) and recompute the statigjf(for each resam-
or do not exist altogether. For each problem, the resamplingpling repetitionb=1...N°S). The bias ofl is estimated by
solution is compared to a parametric or to a non-parametric biads = (3° 755/Nb5) — 1, and the confidence limits of the
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(assumed to be unbiasebiby {7io, Ini} (Section2.2). Alter- 4.1.2. Application: an example _
natively, the bias may be estimated by one of the abovemen-  Fig. 2illustrates an application of this procedure to neural

tioned procedures (but see below). Ifthe bias is not negligible, data obtained from prehension experiments. As an example,
it can be corrected for by subtraction, arriving at ‘de-biased’ We estimate the mutual information between spike counts of a

estimates, PMv unit and the planned direction of movementFig. 2A,
raster plots of the activity of a PMv unit are illustrated; the unit
N R was recorded during93, 93, 91, 89, 93, Ytrials in differ-
J9ebiased_ 7 _ pias, (2.1)  entbehavioral conditions (six movement directions). During
the 400 ms just prior to the ‘Go’ signal, this unit exhibited
modulation of spiking with respect to behavior; spikes were
counted during this period for each trial, and the joint pdf
F = p(r, s) was estimated by direct quantization of the re-

The factor 2 in Eq.(2.2) is necessary because the boot- Sponse spacéig. 2B). The raw mutual informatiort, was
strapped distribution is centered around a biased estimategestimated from# using Eq.(1) and corrected by plugging

{}I%e—biasegi }ﬁie—biasetjl — {}Io, }hi} _ 2bias (2.2)

: s e ) . i K
equivalently, Eq.(2.1) could be written as/de-biased— into Eq.(2.1) biag"®"¢= (3" Ry — R — S+ 1)/(2nlog 2)
o 755/Nb3 — 2 bias. (Panzeri and Treves, 19p6n the latter formula, summation
35
30
g 60 _ %
c
(2] 3
3 40 8 2
x L
0 10 |8
5 8
L e ]
0 60 120 180 240 300
(B) Direction (degrees)
Raw estimate
—— Bootstrap mean
120 60
180 0 = Bootstrap estimate
= = Confidence limits
240 300
(A) — S
07 08 09 1 11 12 13 14 15 16
(C) Mutual information (bits)

Fig. 2. Confidence limits for mutual information of a PMv unit prior to movement. (A) A PMv unit's spiking activity during trials requiring movemint in s
directions shown in different panels (see Secdah?. The bottom part of each panel shows a standard raster diagram, aligned on the ‘Go’ signal (vertical
line); the upper part of each panel shows the corresponding peri-event time histogram (obtained by smoothing rasters with a Gaussian wind@wmsith
Scale bar is 1s. (B) Empirical joint probability distributiéh= p(r, s) (Section4.1) of spike counts in the 400 ms just prior to the ‘Go’ signal (shown in the
six panels of (A) as vertical lines) and movement directions. Gray levels give the joint probabilities of getting a certain amount of spike$ ébwaligiaen
movement direction (abscissa, corresponding to the directions shown by the compass at the lower left-hand side of (A)). Measurements wevergis€rete (
and 1 count). For display purposes the height (gray level) is spread so as to fill the intervals between the discrete values. (C) Confidence {toiteofdias
mutual information. Vertical dotted black line shows the raw estinfatgistogram in light gray (top) shows the bootstrapped distributiéf) Ebtained by
bootstrapping ther(s) pairs; the continuous dark gray line is its mean. The bootstrap estimate of bias is the distance betvibtre distribution mean, Eq.
(2.1); this estimate closely matches the analytic correction described in the text (S&dtidnThe bootstrapped distribution was shifted by twice the bias to
the left for presentation and is shown by the dark gray histogram (bottom); the dark gray dashed lines indicate the translated 99% confiderteimkdits, ob
by Eq.(2.2).
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is over non-zero response biMs in each behaviorg out sure of width): for a homogenously distributed sampf jis
of the Sbehaviors andk is the number of non-zero response close to zero, while for samples clustered around their mean
bins in p(r) (this correction is intended to compensate for it approaches the value of one.
limited sample size). The raw value wag = 1.35 bits and
the corrected value wa&e-biased— 1 29 pits.

Next, the procedure explained in Sectiéii.1was car-
ried out. The distribution of the bootstrapped statigfieis

4.2.1. Non-parametric confidence limits of circular
parameters
We want to estimate the PD of a circular sample as well

shown at the top dfig. 2C in light gray: bootstrapped values @S itsll— « confidence interval. The suitable §tatistic is the
were, on average, higher than the raw estiniagaiggesting direction of the sample’s.resulta}rLtR, as Qef|n§d above.
that some bias indeed shifted the estimate upwards. The bia&>l0sed-form formulae for its confidence limits exist only un-
estimated by bootstrapping was 0.067 bits—very close to the der certain assumptionstardia (1972)gives such formulae
first-order analytically estimated bias of 0.06. After comput- for the specific case where the observations are from the unit
ing and correcting the 99% confidence limits as in @), circle and originate in a circular counterpart of the Gaussian
final estimates were obtained (dark gray dashed lines in thedistribution; that |s the von Mises distrit_)ution (which is uni-
bottom ofFig. 2C), suggesting that the unit transmitted be- Modal, symmetric, and completely defined by two parame-
tween 1.19 and 1.38 bits of information (out of the possible t€rs). If such assumptions cannot be made, the bootstrapping
log, 6= 2.58) about the upcoming movement direction. method described below can be used for estimating confi-
dence limits.

Assume thatX is obtained by sampling the circle M
equally spaced discrete directioﬁs: (b1, 2, ..., M}
When measuring responses to moving gratings or neuralOtherwise, discretize the observation directions. In each di-

activity related to reaching movements, the measurements'éction we ha‘ﬂ’f a set ofm observationsm=1...M,

are made in relation to t.he direction of motion, whlc_:h IS @ totaling n= Y n, such that X = (G
circular independent variable. In the preceding section, the m=1

possible circular nature of the data was ignored for the sake(f;*, ¢1), ..., (fﬁll, éu), ... (fH' . ém)}. In order to

of generality; this omission can be justified on the grounds estimateR, compute the mean amplitude of the observations
that the stimuli were treated as discrete. However, due to the, o= UL

common use of circular data and their physiological meaning, in-each direction, f, = (l/n’”)glfm’ and use Eq(3).

it may be preferable to explore certain circular properties Note that this process is not necessarily equivalent to direct
of the data. Before describing specific tests designed to testapplication of Eq(3) to X: only when allny,’s are identical
hypotheses on such data, we introduce several basic termsjo the two estimates converge. Next, rearrange the saxnple

4.2. Estimating parameters for circular distributions

from circular statistics.

Let us extend the data-generation model (Secfd)
to a circular one-sample scenario. Each of thebserva-
tions in X is now a vector, described in polar coordinates
by X; = (f;, ¢;) of (amplitude, direction). Note that in this
model sampling is not limited to the circumference of the

such that each set & observations from different directions
forms a new observation:

= o0 o (FLbm)s s (fis o)),

m=1...M, j=1...max@,). (4)

unit circle, so both amplitude and direction are sampled from !f nm’s have different sizes due to unbalanced finite sampling,
a continuum. The sample’s resultant (i.e. the vectorial sum the appropriate elements:ofshould be leftempty. Neithet

of all %;’s), normalized to a length between 0 and 1, may be
represented in Cartesian coordinates by

- Y ficose; Y fising;
R={R, R}, R, ==t —p _ 2 iS¢
e Ry} i PTEE

(all summations are over 1...n). The direction (argument)
ofR,/R = tan*l(Ry/Rx), resolvedtothe proper quadrant, is
the first moment of the circular sample, or preferred direction
(PD); its amplitude}R| = ./ R2 + RZ, gives the complement
of the second moment, the circular varianSe<{ 1 — |7€|).
Note that if sampling is limited to the unit circle itself,
R simplifies to the expressiofR, = (1/n) Y cost;, R, =
(1/n) 3_sing;} (Mardia, 1972. The normalized amplitude of
the resultantR| is invariant to rotations and can be regarded

as a measure of concentration (afig= 1 — |R| as a mea-

nor the statistic/ R change following this rearrangement. We
are now in a position to directly apply a bootstrapping proce-
dure (SectiorR.2) to the set of rearranged observations and
arrive at confidence limits for the PD. A similar procedure,
using the test statistiﬁel, will yield confidence limits for
the resultant’s amplitude, or sample width. The same boot-
strapped distribution ak can be used for the computation of
confidence limits of botty R and|7€|.

4.2.2. Application: confidence limits for PD and
concentration of directional tuning curves

The activity of a single PMv unit was recorded during
n=245 trials; we want to estimate the PD and the concen-
tration of the directional tuning curve (TC) of this unit as
well as confidence limits for these parameters. Trials in-
cluded presentation of target objects in six fixed directions,
55 ={(0,1/6,...,5/6)2r}. During movement in each trial,
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Fig. 3. Confidence limits of PD and concentration of a PMv unit’s directional tuning curve during movement. (A) Empirical joint distribution of ait2Mv un

firing rate during movement and movement direction. Measurements on the ordinate were quantized into bins of five spikes per second for display purpose
Other conventions are the same a&ig. 2B. (B) Directional tuning curve of the same unit shown in A, obtained by averaging spike counts in each direction.
Radial scale corresponds to 15 spikes/sec; the resultant’s length is shown as a fraction of this radius. In a dotted line, the maximum likekit@a@d @stim

von Mises distribution is shown. Clearly, the experimental data diverge from the von Mises distribution. (C) The tuning curvel R&rt(cal continuous

black line) and its 99% confidence limits (dashed lines), estimated®by 5000 resampling repetitions. The mean of the distribution is also shown (vertical
continuous gray line); the estimate is essentially unbiased. (D) Estimation of tuning concemf{'athjnng with confidence limits. Conventions are the same

asin (C).

the firing rate during a window of 400 ms around movement von Mises pdf resulted in erroneous estimates of the confi-

initiation was noted af, so in this example we have= (fi, dence limits both in terms of range and bias: application of
¢m), 1 =1...n,nn={42, 40, 41, 40, 40, 42 ¢,, € ¢. Fig. 3A our procedure to data that did fit a von Mises distribution
illustrates the joint distribution dfand¢. From this distribu- yielded confidence limits similar to those obtained directly

tion, the TC of the unit was point-estimated by averaging the under the assumption that the distribution is von Mises.
variousfi’s in each of theM directions, ,,, ¢.») (Fig. 3B);

the PD and concentration of this TC were computed, as were4.3. Testing circular distributions for equality

their non-parametric 99% confidence limiEd. 3C and D).

As the figure suggests, this unit had sharp directional tun-  Assume that neural responses to certain circular stim-
ing, with a PD of 193 (with 99% confidence limits at (179 uli under two conditions (say attentive and non-attentive)
211°)) and a resultant length of 0.21 (range (0.15, 0.27)). are measured, and that we want to know whether the re-
As can be appreciated froffig. 3B, the tuning curve did  sponses are affected by these conditions. Specifically, it is
not fit a von Mises distribution well (likelihood-ratio test, of interest to know whetheanyaspect of the responses (that
p<0.01). Nevertheless, we estimated parametric confidenceis, their distributions) differs across the conditions. Statisti-
limits for the PD and the resultant's length based on a von cally speaking, this is aircular two-samplescenario, where
Mises distribution Mardia, 1973, arriving at wider (and bi-  there aren; observations of; — X1 and, independently,
ased) estimates for both parameters (PD: {1825); |R|: ny observations off, — 5(2. Assume that the two circu-
(0.06, 0.27)). Obviously, lack of fit between the data and the lar distributions are sampled in the saMediscrete direc-



140 E. Stark, M. Abeles / Journal of Neuroscience Methods 145 (2005) 133-144

tions. We want to tesHg: F1=F». For linear, continuous  sampling testCrammond and Kalaska, 199fbr each ob-
data, a standard two-sample non-parametric test, such as thgct separately). As the figure suggests, the circular distri-
Kolmogorov—-Smirnov goodness-of-fit test, can be used. For butions appear to differ from one another. Applying a non-
two samples evaluatemh the unit circle itself, a Uniform- parametric (likelihood-ratio) test of goodness-of-fit to these
Scores (Wheeler's) tedtfardia, 1972is adequate. However, data indicated that the two discrete distributions indeed dif-
our case does not fall within these categories since the vectordered < 0.01); the permutation test described above yielded
can be anywhere and not just on the circumference of the unita similar result Fig. 4B). Importantly, the permutation test

circle; we will therefore use a circular permutation test. indicated that the difference was mainly due to a change of
tuning widthbetween objects rather than due to a change of
4.3.1. Circular permutation test PDs Fig. 4C and D).
Define the test statisti¢X1, X2) as the absolute difference ) N )
between the resultants of the two samples 4.4. Testing hypotheses on partitioned data: spatial

R R organization

AR = ||R1— R2|l. (5)

) o . For each unit recorded in the experiment, a preferred
Under Ho, this statistic should be close to zero; if the two object (PO) was computed as the object that elicited the
samples have equal concentrations but the PDs are displaceg,aximal response (Mann—Whitndy-test, p<0.01). Dur-
by m radians,AR could approach a value of two. Note that  jng each recording session, up to eight electrodes were in-
AR does not depend solely on the first moments of the dis- serted through a common guide tube (inter-electrode distance
tributions: if the PDs are similar but one sample is dispersed ~300pm), so multiple POs could be obtained from elec-
and the other is concentratedR should be close to one.  trgdes in close proximityFig. 54 shows, in different rows,
Applying a permutation test in this setup is now straight- pQs from different sessions (recording sites). Usually, sev-
forward: we randomly assign values from each discrete di- era| units were recorded by a single electrode and sometimes
rection to either sample (taking advantage of the identical geyeral had POs. These are indicated by heavy line boxes in
sampling frequenci¥ of the two distributionsNP€"™ times, Fig. 5A.
and recompute the statistic, arriving at a permuted distri- A question of physiological importance is whether POs

i erm i ini iati . . -

bution, ARP®™ The probability of obtaining a statistic as  recorded in the same site are as similar as expected from the
large as or Iargeretrf:naAR U”der('e‘r'rgl is then approximated by entire sample. A negative answer would indicate some kind of
probHo) =#{ ARPEM > AR}/NPE, o spatial arrangement of units with similar preferred objects,

_ Since sampling is discrete (or when discretization is plau- since units recorded by the same electrode (electrode set,
sible), a conventional test of goodness-of-fit (such ascthe Selectroded are anatomically closer than units recorded by dif-
or the likelihood-ratio test) can be applied. However, the per- ferent electrodes at the same recording Stg:9, which are,
mutation test described above is more sensitive to revealingin tyrn, closer than units recorded in different sitepM9.
deviation from equality. Moreover, a slight variation in the Examination of the data dfig. 5A indicates that overall,
tes’F statistic enables usto tgst the satpwith different alte_r- both object types were preferred to a similar degree (28 and
natives. Assume that we wish to test the null hypothBigis 21 preferences for precision and power grips, respectively).

F1=F against the alternativll;: /Ry # ZRp; thatis, that  cjoser inspection of the different rows (sites) suggests, how-
the samples have different PDs regardless of their widths. Angyer that multiple units recorded in the same site often had

appropriate test statistic could bR = 7 — |7 — | ZRy — the same PO.

ZRy||, the absolute difference between two preferred direc-  How can this tendency be quantified? A simple and direct

tions. If the alternative; is non-equal sample concentra-  method would be to compute all pair-wise PO ‘differences’

tions, AR® = ||Ry| — |Ro||; that is, the absolute difference  \yithin sites and compare them to pair-wise differences in the

between the amplitudes of the resultants, could be utilized. gptire sample. Define a pair-wise difference as 0 if the two

objects are identical and as 1 if they are different. For the data

4.3.2. Application: comparison of tuning curves of Fig. BA, the mean pair-wise PO-difference within sites was
Trials included presentation of and movement towards 0.32 and across all observations it was 0.5. The two popula-

different objects in the same six directions. A physiologi- tions differed significantly (Mann—Whitndy-test,p<0.01),

cal question of interest is whether a certain unit changed indicating that nearby neurons tended to ‘prefer’ similar ob-

its directional tuning in response to different objects; in jects.

order to address this question for one specific PMd unit,  The direct method exemplified above has, however, three

directional tuning curves during trials involving power drawbacks: (1)itconsidersonly pair-wise differences (or sim-

grips @ = {22, 20, 19, 20, 19, 18}) and precision gripsi= ilarities), neglectindnigher-order similarities(2) it does not

{20, 22, 20, 20, 23, 21}) were estimatedHig. 4A). During account for possibléntra-electrode effectq3) anapprox-

preparation for movement, this unit had significant direc- imation of the probability calculation was used. While this

tional tuning toboth objects (determined by showing sta- latter technicality can be easily amended by using an exact

tistical significance for both a Kruskal-Wallis test and a re- binomial test, the issue of higher-order similarities cannot.
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Fig. 4. Differences between tuning curves of a PMd unit during preparation for movement. (A) Tuning curve for a power grip object (light graypcagzerim

on a tuning curve for a precision grip object (dark gray). Radius corresponds to 25 spikes/s; other conventions are the Bama&Bag®) Histogram of the
permuted statistica RP€"™ values, testing the null hypothesis that the circular distributions are the same. Vertical line indicates the value of the aBserved

The null hypothesis is strongly rejectdd?®™=5000. (C) Values of the permuted statisN&LPE™ testing whether the two distributions have identical PDs.

The observechR®) is larger than only 94% of the permuted statistics’ values, hence the null hypothesis cannot be rejected at the 5% level. (D) Histogram of the
permuted statistic R?Pe™ The observed value (vertical line) was larger than all bootstrapped values, indicating that the difference between the distributions
is likely to be due to different tuning widths.

This can be illustrated with a simple example. Assume that similarities (heavy boxes within rows): in six out of nine
four Bernoulli trials with a success probability of 1/2 are per- cases, intra-electrode pairs were identical. In addition, some
formed (analogous to four POs within the same site), and thatintra-site similarities were entirely due to intra-electrode sim-
in all trials failures were observed. If pair-wise probabilities ilarities (see, for example, seventh row from the bottom). The
are computed, then six pairs, each consisting of two failures direct method used above does not take these similarities into
with a probability of 1/4, should be observed; the probability account at all.
of observing such a pair can be estimated from the sample by  Both the first and second problems could be solved by us-
the geometric mean of all observations, which in this case is ing a bootstrap test of hypotheses. The null hypothesis is that
1/4. However, the a-priori probability of four failures in four intra-site similarities are the same as similarities throughout
trials is 1/16. The discrepancy is due to the fact that by lim- the entire sample. For each ‘elemestfor example, a site,
iting quantification to pairs, the higher-order structure was i.e., arow ofFig. 5A) a statistid(s) is computed; in our exam-
missed altogether. ple, it can simply be the number of ‘ones’ in the site, denoted
The second problem which arises from ignoring intra- by m. Then, a probability is estimated under some assump-
electrode similarities is more severe. Intra-site similarities tion A9'°°@ for example, of random allocation from the entire
(rows of Fig. 5A) are obviously affected by intra-electrode sample. Denote the global probability of the occurrence of a
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Fig. 5. Partitioned binary observations: spatial arrangement of preferred objects. (A) Example of a dataset (see algdodpeahearvations are preferred
objects (POs) of PMd units from one monkey, determined by applying a Mann—-Whittest to spike counts during the 400 ms just before the ‘Go’ signal. ‘1’
indicates preference for a precision grip, while ‘2’ indicates preference for a power grip; all observations together c8sn&iitDiéferent rows correspond to
different recording sitesS;iie9, hence observations within the same row are from units anatomically closer than between rows. Heavy line boxes within each
row enclose numbers corresponding to objects preferred by units recorded from the same eRgispeRyY: (B) Testing equality of intra-site and population
(sample) similarities (se&iiesandSpmq). Vertical line shows the observed value of the log-likelihdg@pmg). Similarities were unlikely to be equad € 0.01),
since almost all bootstrapped values were larger than the obdg(Sggdy) (black line). (C) Comparison of intra-site similarities to the similarities in the entire
population, taking into account intra-electrode influences. Resampling was done separately for electrodes with two POs (heavy line boxestphnfbsepar
electrodes with a single PO (see Sectof). Comparison of the sample statisti€S;iied With its bootstrapped distribution suggested that intra-site similarities
are neither explained by intra-electrode similarities nor are likely to arise by char@d5); however, intra-electrode similarities clearly affected this result
(compare with (B)).

‘one’ (a precision grip object) by (here, 0.57), the number of  normalized by the number of sites in the sample; in the case
such objects in a given site (row) loy; and the total number  of our example, it is equal tb(Ssited = —1.44.

of observations in that site biyl. The probability to observe Next, this statistic is compared to its expected value.
m or fewer ‘ones’ (orM — m or fewer ‘twos’, whichever is  Since sites of different size were used (tackling the first
smaller) is then given by problem described above by taking higher order similari-
" ties into consideration), there is no analytically-computable
lobal . M\ M—k expected value. However, by random assignment (with re-
pl(s)|A® I) =min {Z ( ) G placement) of POs from the entire sample to sites and repeti-
k=0 tive calculations ofL(ngeS), a bootstrapped distribution of
M=m [ pg C Mok L(Ssie9 can be generated, and the probability of accept-
> ‘ A-p'p : (6) ing the null hypothesis can be estimated from its tail (by
k=0 prob(Ho) = #{(L(S55s;) < L(Ssited}/N"S). Fig. 5B shows
Since the sample includes a number of sites, the average logthe results of applying this procedure to our dataset: the ob-
likelihood of the set is computed by servedL_(Ssiteg was indeed surprising, be_lng small_er_tha_n
99% of its bootstrapped values, suggesting that within-site
1 lobal similarities could not be attributed to chance alone.
L) = m ; l0g(p(i(s)| A7), (7) To address the second problem above (the confounding ef-

fect of intra-electrode similarities on intra-site similarities),
where, in our casesis the set of site§sitesand|S the total resampling should be performed in a manner tuwatserves
number of sites (19). The statisti¢S) reflects the probability ~ subset structurethe composition of units recorded by each
of obtaining the observed intra-site similaritiesadiforders, electrode. If a certain row dsjtes containsd electrodes (for
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example, POs of units recorded by three electrodes in the Although these applications are by no means exhaustive,
same siteFig. 5A, fourth row from the bottom), resampled they do represent an array of problems that can be addressed
‘sites’ should also contaid electrodes, each of the same size in the framework of resampling methods. The procedures
and structure (POs of three electrodes, two with two POs andconstructed here were applied to scalar and complex (polar)
one with one PO, but not necessarily all from the same site variables. Resampling methods may be easily applied to vec-
(row)). Note that the value d&f(Ssite9 does not change—only  tor statistics, for example, to a cross-correlation function or to
the null hypothesis does, as it now considers intra-electrodethe spike-triggered average. In order to construct confidence
effects. This procedure yieldesinallerbootstrapped values  limits for such statistics computed from a finite dataset, data
(Fig. 5C), indicating that some intra-site similarities could could be resampled, the vector statistic could be recomputed,
indeed be attributed to intra-electrode similarities. Neverthe- and the confidence limits could be estimated from the sorted
less | (Ssite9 Was smaller than over 95% of these bootstrapped values ofeach elememf the vectors.

values, suggesting that some anatomical organization beyond When can resampling methods be used to answer a sta-
similarities within the same electrode does exist among the tistical question? It turns out that under most circumstances
recording sites. and for most statistics, such methods are readily applicable.

Two points should be stressed. First, the assump§ha! Exceptions to straightforward application include dependent
used to estimate the probabilities is not verified during the sampling (deviation from iid sampling such as a time series),
procedure; in fact, it does not have to be exactly correct: the and non-smooth statistics (for instance, the sample’s maxi-
only requirement is for it to be applied @l (the original mal value). Such cases may, however, be ‘worked around’ by
and the resampled) sets during the bootstrapping procedureparticular resampling techniques or by smoothing data prior
Second, assignment of observations from set to set shouldo resampling Chee-Orts and Optican, 1993; Davidson and
conserve subset structyres exemplified above. Hinkley, 1997.

The above procedure may be generalized to any dataset A question that is particularly relevant to the neurophys-
obeying similar rules of partitioning (in each set, each obser- iologist is therefore whershould resampling methods be
vation appears once, and each set is a union of the elementsised. One of the main advantages of resampling methods,
of another, hierarchically lower set). A variant of this proce- as demonstrated by the procedures presented in this paper,
dure, theCircular Variance Testwas applied byBen-Shaul is that they are tuned to the data at hand: the bootstrap esti-
et al. (2003)o PDs of units recorded in the Macaque motor mates the probability mechanism underlying data generation
cortex. In this paper we have described an application to nom-(Section4.1) and permutation tests exploit the symmetry of
inal variables (preference for discrete object types). Clearly, the null hypothesis (Sectigh3). These properties imply that
other applications are possible as well. no parametric assumptions must be made during the process.

Nevertheless, this is not all goodness. As is well known from

conventional statistics, parametric tests, when their assump-
5. Discussion tions are met, are preferred over non-parametric tests due to

their higher sensitivity (power, the probability to reject the

We have presented applications of resampling methodsnull hypothesis when the alternative is correct) as well as due
to four types of physiological issues. The first procedure was to their inferential value.
applied to estimates of mutual information from discrete neu- ~ We thus propose the following scheme (conJalble J).
ral data, and allowed placing confidence limits on such es- If data and statistic conform nicely to some parametric dis-
timates, a task that does not have an analytical equivalent.tribution, aparametric tests preferable. If this is not the
The second procedure involved confidence limits as well, case and a non-resamplinpn-parametridest is available,
this time on circular parameters that often describe data ob-it can be used, saving computer time and additional program-
tained from neurophysiological experiments. Here, the goal ming. If such a test does not exist or additional verification
could be achieved by making parametric assumptions on theof test assumptions or performance is neededsampling
data, assumptions that, as shown, can yield incorrect results(non-parametric) test should be utilized.

These two procedures used the bootstrap method of resam- If only few assumptions can be made about the data but an
pling. The third procedure was also related to circular data, appropriate non-resampling test does not exist, parametric re-
and involved a comparison of distributions; for this applica- sampling is possible. One would need to estimate parameters
tion, use of a permutation test was appropriate, due to theof the distribution assumed to have generated the data, and
symmetric null hypothesis. While a non-parametric test of resample fronthat distribution: such resampling was origi-
goodness-of-fit could be used with lower sensitivity, it could nally termed ‘Monte Carlo’ simulations and is often used to
not reveal sources of differences. We concluded with a pro- evaluate properties of statistical tests. Alternatively, resam-
cedure designed to test specific hypotheses on spatially orpling may be performed directly under certain assumptions,
dered data, which can be applied to any dataset that obeysuning the test to fit théypeof data in hand, rather than to a
certain rules of partitioning. Due to the complicated data single, specific, dataset.

structure and possible interactions between ‘sets’, we used In summary, we presented a unified framework for the use
a bootstrapping-based test with non-trivial resampling rules. of resampling methods by the analyst of neurophysiological
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Table 1

Properties of different families of statistical tests

Test Parametric Non-parametric Resampling

Applicability Specific cases Wide Almost all cases

Assumptions Fixed Fixed, but usually weak Flexible

Computation time Short Usually short Could be long

Inference Parametric Non-parametric Both non-parametric and parametric

Usage Straightforward Straightforward May require additional planning or programming

data. We have shown that resampling-based procedures cagover TM, Thomas JA. Elements of information theory. New York: Wi-
be easily applied to a host of different types of problems yield- ~ ley; 1991.

ing meaningful results, results that often cannot be ObtainedCrammond DF, Kalaska JF. Differential relation of dischargg in primgry
. tional methods motor and premotor cortex to movement posture during reaching

using anven . e . . movements. Exp Brain Res 1996;108:45-61.

Routines for implementing the procedures described in payidson AC, Hinkley DV. Bootstrap methods and their application. Cam-

this paperwere writtenin C and in MATLAB and are available bridge: Cambridge University Press; 1997.

from ES upon request. Efron B. Bootstrap methods: another look at the jackknife. Ann Stat
1979;7:1-26.
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